Kamis, 31 Agustus 2017

Tropical Storm Harvey seen by NOAA’s GOES East satellite

Tropical Storm Harvey seen by NOAA’s GOES East satellite

NOAA’s GOES-East satellite provided a visible-light image of Tropical Storm Harvey on Wednesday, August 30, 2017 at 7:30 a.m. EDT (1230 UTC), hours after it made landfall at 4 a.m. CDT just west of Cameron, Louisiana. At the time of the image, the bulk of showers and thunderstorms around Harvey seemed to stretch from the northern to southwestern quadrants of the storm.

Image Credit: NASA/NOAA GOES Project

Star Cluster NGC 3766

Star Cluster NGC 3766

This spectacular group of young stars is the open star cluster NGC 3766 in the constellation of Centaurus (The Centaur). Very careful observations of these stars by a group from the Geneva Observatory using the Swiss 1.2-metre Leonhard Euler Telescope at ESO’s La Silla Observatory in Chile have shown that 36 of the stars are of a new and unknown class of variable star.

This image was taken with the MPG/ESO 2.2-metre telescope at the La Silla Observatory.

Image Credit: ESO
Explanation from: https://www.eso.org/public/images/eso1326a/

Galaxy Group NGC 5813

Galaxy Group NGC 5813

  • Chandra data show the supermassive black hole at the center of NGC 5813 has erupted multiple times over 50 million years.
  • NGC 5813 is a group of galaxies that is immersed in an enormous reservoir of hot gas.
  • Cavities, or bubbles, in the hot gas that Chandra detects gives information about the black hole's eruptions.
  • Chandra's observations of NGC 5813 are the longest ever of a galaxy group taken in X-ray light.

Astronomers have used NASA's Chandra X-ray Observatory to show that multiple eruptions from a supermassive black hole over 50 million years have rearranged the cosmic landscape at the center of a group of galaxies.

Scientists discovered this history of black hole eruptions by studying NGC 5813, a group of galaxies about 105 million light years from Earth. These Chandra observations are the longest ever obtained of a galaxy group, lasting for just over a week. The Chandra data are shown in this new composite image where the X-rays from Chandra (purple) have been combined with visible light data (red, green and blue).

Galaxy groups are like their larger cousins, galaxy clusters, but instead of containing hundreds or even thousands of galaxies like clusters do, galaxy groups are typically comprised of 50 or fewer galaxies. Like galaxy clusters, groups of galaxies are enveloped by giant amounts of hot gas that emit X-rays.

The erupting supermassive black hole is located in the central galaxy of NGC 5813. The black hole's spin, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet.

The researchers were able to determine the length of the black hole's eruptions by studying cavities, or giant bubbles, in the multi-million degree gas in NGC 5813. These cavities are carved out when jets from the supermassive black hole generate shock waves that push the gas outward and create huge holes.

The latest Chandra observations reveal a third pair of cavities in addition to two that were previously found in NGC 5813, representing three distinct eruptions from the central black hole. (Mouse over the image for annotations of the cavities.) This is the highest number of pairs of cavities ever discovered in either a group or a cluster of galaxies. Similar to how a low-density bubble of air will rise to the surface in water, the giant cavities in NGC 5813 become buoyant and move away from the black hole.

To understand more about the black hole's history of eruptions, the researchers studied the details of the three pairs of cavities. They found that the amount of energy required to create the pair of cavities closest to the black hole is lower than the energy that produced the older two pairs. However, the rate of energy production, or power, is about the same for all three pairs. This indicates that the eruption associated with the inner pair of cavities is still occurring.

Each of the three pairs of cavities is associated with a shock front, visible as sharp edges in the X-ray image. These shock fronts, akin to sonic booms for a supersonic plane, heat the gas, preventing most of it from cooling and forming large numbers of new stars.

Close study of the shock fronts reveals that they are actually slightly broadened, or blurred, rather than being very sharp. This may be caused by turbulence in the hot gas. Assuming this is the case, the authors found a turbulent velocity - that is, the average speed of random motions of the gas - of about 160,000 miles per hour (258,000 kilometers per hour). This is consistent with the predictions of theoretical models and estimates based on X-ray observations of the hot gas in other groups and clusters.

Image Credit: X-ray: NASA/CXC/SAO/S.Randall et al., Optical: SDSS
Explanation from: http://chandra.harvard.edu/photo/2015/ngc5813/

Rabu, 30 Agustus 2017

The Trapezium Star Cluster

Trapezium Star Cluster

This image shows a colour composite of near-infrared images of the central regions of the Orion Nebula, obtained on March 14, 2000, with the SOFI instrument at the ESO 3.5-m New Technology Telescope (NTT) at La Silla. Three exposures were made through J- (wavelength 1.25 µm here colour-coded as "blue"), H- (1.65 µm; "green") and Ks-filters (2.16 µm; "red"), respectively. The central group of bright stars is the famous "Trapezium" . The total effective exposure time was 86.4 seconds per band. The sky field measures about 4.9 x 4.9 arcmin 2 (1024 x 1024 pix 2).

Image Credit: ESO
Explanation from: https://www.eso.org/public/images/eso0124a/

Hickson Compact Galaxy Group 59

Hickson Compact Galaxy Group 59

That galaxies come in very different shapes and sizes is dramatically demonstrated by this striking Hubble image of the Hickson Compact Group 59. Named by astronomer Paul Hickson in 1982, this is the 59th such collection of galaxies in his catalogue of unusually close groups. What makes this image interesting is the variety on display. There are two large spiral galaxies, one face-on with smooth arms and delicate dust tendrils, and one highly inclined, as well as a strangely disorderly galaxy featuring clumps of blue young stars. We can also see many apparently smaller, probably more distant, galaxies visible in the background. Hickson groups display many peculiarities, often emitting in the radio and infrared and featuring active star-forming regions. In addition their galaxies frequently contain Active Galactic Nuclei powered by supermassive black holes, as well large quantities of dark matter.

The NASA/ESA Hubble Space Telescope's Advanced Camera for Surveys, using the Wide Field Channel, captured this image of HCG059 in 2007. The picture was created from images taken through blue, yellow and near-infrared filters (F435W, F606W and F814W). The total exposure times per filter were 57 minutes, 41 minutes and 35 minutes respectively. The field of view is about 3.4 arcminutes across.

Image Credit: ESA/Hubble and NASA
Explanation from: https://www.spacetelescope.org/images/potw1004a/

Selasa, 29 Agustus 2017

Planetary System Gliese 581

Planetary System Gliese 581

After more than four years of observations using the most successful low-mass exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile, astronomers have discovered in this system the lightest exoplanet found so far: Gliese 581e (foreground) is only about twice the mass of our Earth. The Gliese 581 planetary system now has four known planets, with masses of about 1.9 (planet e, left in the foreground), 16 (planet b, nearest to the star), 5 (planet c, centre), and 7 Earth-masses (planet d, with the bluish colour). The planet furthest out, Gliese 581d, orbits its host star in 66.8 days, while Gliese 581 e completes its orbit in 3.15 days.

Image Credit: ESO/L. Calçada
Explanation from: https://www.eso.org/public/images/eso0915a/

Saturn's north pole

Saturn's north pole

These turbulent clouds are on top of the world at Saturn. NASA's Cassini spacecraft captured this view of Saturn's north pole on April 26, 2017 - the day it began its Grand Finale -- as it approached the planet for its first daring dive through the gap between the planet and its rings.

Although the pole is still bathed in sunlight at present, northern summer solstice on Saturn occurred on May 24, 2017, bringing the maximum solar illumination to the north polar region. Now the Sun begins its slow descent in the northern sky, which eventually will plunge the north pole into Earth-years of darkness. Cassini's long mission at Saturn enabled the spacecraft to see the Sun rise over the north, revealing that region in great detail for the first time.

This view looks toward the sunlit side of the rings from about 44 degrees above the ring plane. The image was taken with the Cassini spacecraft wide-angle camera using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers.

The view was obtained at a distance of approximately 166,000 miles (267,000 kilometers) from Saturn. Image scale is about 10 miles (16 kilometers) per pixel.

Image Credit: NASA/JPL-Caltech/Space Science Institute
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA21343

© 2013 demo-templatetokosebelah. All rights resevered. Powered By Blogger