Tampilkan postingan dengan label Published. Tampilkan semua postingan
Tampilkan postingan dengan label Published. Tampilkan semua postingan

Minggu, 21 Januari 2018

Volcán de Colima Eruption

Volcán de Colima Eruption

Colima, Mexico
January 26, 2017

Image Credit & Copyright: Sergio Tapiro

Jumat, 19 Januari 2018

Globular Cluster Messier 79

Globular Cluster Messier 79

It’s beginning to look a lot like Christmas in this NASA/ESA Hubble Space Telescope image of a blizzard of stars, which resembles a swirling storm in a snow globe.

These stars make up the globular cluster Messier 79, located about 40 000 light-years from Earth in the constellation of Lepus (The Hare). Globular clusters are gravitationally bound groupings of up to one million stars. These giant “star globes” contain some of the oldest stars in our galaxy. Messier 79 is no exception; it contains about 150 000 stars, packed into an area measuring just roughly 120 light-years across.

This 11.7-billion-year-old star cluster was first discovered by French astronomer Pierre Méchain in 1780. Méchain reported the finding to his colleague Charles Messier, who included it in his catalogue of non-cometary objects: The Messier catalogue. About four years later, using a larger telescope than Messier’s, William Herschel was able to resolve the stars in Messier 79 and described it as a “globular star cluster.”

In this sparkling Hubble image, Sun-like stars appear yellow-white and the reddish stars are bright giants that are in the final stages of their lives. Most of the blue stars sprinkled throughout the cluster are aging “helium-burning” stars, which have exhausted their hydrogen fuel and are now fusing helium in their cores.

Image Credit: NASA and ESA, S. Djorgovski (Caltech) and F. Ferraro (University of Bologna)
Explanation from: https://www.spacetelescope.org/images/potw1751a/

Kamis, 18 Januari 2018

Spiral Galaxy NGC 1398

Spiral Galaxy NGC 1398

This picture shows spectacular ribbons of gas and dust wrapping around the pearly centre of the barred spiral galaxy NGC 1398. This galaxy is located in the constellation of Fornax (The Furnace), approximately 65 million light-years away.

Rather than beginning at the very middle of the galaxy and swirling outwards, NGC 1398’s graceful spiral arms stem from a straight bar, formed of stars, that cuts through the galaxy’s central region. Most spiral galaxies — around two thirds — are observed to have this feature, but it’s not yet clear whether or how these bars affect a galaxy’s behaviour and development.

This image comprises data gathered by the FOcal Reducer/low dispersion Spectrograph 2 (FORS2) instrument, mounted on ESO’s Very Large Telescope (VLT) at Paranal Observatory, Chile. It shows NGC 1398 in striking detail, from the dark lanes of dust mottling its spiral arms, through to the pink-hued star-forming regions sprinkled throughout its outer regions.

This image was created as part of the ESO Cosmic Gems programme, an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The programme makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.

Image Credit: ESO
Explanation from: https://www.eso.org/public/images/potw1801a/

Rabu, 17 Januari 2018

The Bluest of Ice

The Bluest of Ice

Acquired on November 29 by Operation IceBridge during a flight to Victoria Land, this image shows an iceberg floating in Antarctica's McMurdo Sound. The part of the iceberg below water appears bluest primarily due to blue light from the water in the Sound. The undersides of some icebergs can be eroded away, exposing older, denser, and incredibly blue ice. Erosion can change an iceberg’s shape and cause it to flip, bringing the sculpted blue ice above the water’s surface. The unique step-like shape of this berg—compared to the tabular and more stable berg in the top-right of the image—suggests that it likely rotated sometime after calving.

Operation IceBridge—an airborne mission to map polar ice—recently made several flights out of the McMurdo and Amundsen-Scott South Pole stations, giving researchers greater access to the interior of the icy continent. For the ninth year in a row, flights over Antarctica have turned up ample science data, as well as spectacular images.

Image Credit: NASA/Chris Larsen
Explanation from: https://www.nasa.gov/image-feature/the-bluest-of-ice

Rabu, 03 Januari 2018

π1 Gruis

π1 Gruis

Astronomers using ESO’s Very Large Telescope have for the first time directly observed granulation patterns on the surface of a star outside the Solar System — the ageing red giant π1 Gruis. This remarkable new image from the PIONIER instrument reveals the convective cells that make up the surface of this huge star, which has 350 times the diameter of the Sun. Each cell covers more than a quarter of the star’s diameter and measures about 120 million kilometres across. These new results are being published this week in the journal Nature.

Located 530 light-years from Earth in the constellation of Grus (The Crane), π1 Gruis is a cool red giant. It has about the same mass as our Sun, but is 350 times larger and several thousand times as bright. Our Sun will swell to become a similar red giant star in about five billion years.

An international team of astronomers led by Claudia Paladini (ESO) used the PIONIER instrument on ESO’s Very Large Telescope to observe π1 Gruis in greater detail than ever before. They found that the surface of this red giant has just a few convective cells, or granules, that are each about 120 million kilometres across — about a quarter of the star’s diameter. Just one of these granules would extend from the Sun to beyond Venus. The surfaces — known as photospheres — of many giant stars are obscured by dust, which hinders observations. However, in the case of π1 Gruis, although dust is present far from the star, it does not have a significant effect on the new infrared observations.

When π1 Gruis ran out of hydrogen to burn long ago, this ancient star ceased the first stage of its nuclear fusion programme. It shrank as it ran out of energy, causing it to heat up to over 100 million degrees. These extreme temperatures fueled the star’s next phase as it began to fuse helium into heavier atoms such as carbon and oxygen. This intensely hot core then expelled the star’s outer layers, causing it to balloon to hundreds of times larger than its original size. The star we see today is a variable red giant. Until now, the surface of one of these stars has never before been imaged in detail.

By comparison, the Sun’s photosphere contains about two million convective cells, with typical diameters of just 1500 kilometres. The vast size differences in the convective cells of these two stars can be explained in part by their varying surface gravities. π1 Gruis is just 1.5 times the mass of the Sun but much larger, resulting in a much lower surface gravity and just a few, extremely large, granules.

While stars more massive than eight solar masses end their lives in dramatic supernovae explosions, less massive stars like this one gradually expel their outer layers, resulting in beautiful planetary nebulae. Previous studies of π1 Gruis found a shell of material 0.9 light-years away from the central star, thought to have been ejected around 20 000 years ago. This relatively short period in a star's life lasts just a few tens of thousands of years – compared to the overall lifetime of several billion – and these observations reveal a new method for probing this fleeting red giant phase.

Image Credit: ESO
Explanation from: https://www.eso.org/public/news/eso1741/

Senin, 01 Januari 2018

Cassiopeia A

Cassiopeia A

Where do most of the elements essential for life on Earth come from? The answer: inside the furnaces of stars and the explosions that mark the end of some stars’ lives.

Astronomers have long studied exploded stars and their remains – known as “supernova remnants” – to better understand exactly how stars produce and then disseminate many of the elements observed on Earth, and in the cosmos at large.

Due to its unique evolutionary status, Cassiopeia A (Cas A) is one of the most intensely studied of these supernova remnants. A new image from NASA’s Chandra X-ray Observatory shows the location of different elements in the remains of the explosion: silicon (red), sulfur (yellow), calcium (green) and iron (purple). Each of these elements produces X-rays within narrow energy ranges, allowing maps of their location to be created. The blast wave from the explosion is seen as the blue outer ring.

X-ray telescopes such as Chandra are important to study supernova remnants and the elements they produce because these events generate extremely high temperatures – millions of degrees – even thousands of years after the explosion. This means that many supernova remnants, including Cas A, glow most strongly at X-ray wavelengths that are undetectable with other types of telescopes.


Chandra’s sharp X-ray vision allows astronomers to gather detailed information about the elements that objects like Cas A produce. For example, they are not only able to identify many of the elements that are present, but how much of each are being expelled into interstellar space. 



The Chandra data indicate that the supernova that produced Cas A has churned out prodigious amounts of key cosmic ingredients. Cas A has dispersed about 10,000 Earth masses worth of sulfur alone, and about 20,000 Earth masses of silicon. The iron in Cas A has the mass of about 70,000 times that of the Earth, and astronomers detect a whopping one million Earth masses worth of oxygen being ejected into space from Cas A, equivalent to about three times the mass of the sun. (Even though oxygen is the most abundant element in Cas A, its X-ray emission is spread across a wide range of energies and cannot be isolated in this image, unlike with the other elements that are shown.)



Astronomers have found other elements in Cas A in addition to the ones shown in this new Chandra image. Carbon, nitrogen, phosphorus and hydrogen have also been detected using various telescopes that observe different parts of the electromagnetic spectrum. Combined with the detection of oxygen, this means all of the elements needed to make DNA, the molecule that carries genetic information, are found in Cas A.



Oxygen is the most abundant element in the human body (about 65% by mass), calcium helps form and maintain healthy bones and teeth, and iron is a vital part of red blood cells that carry oxygen through the body. All of the oxygen in the Solar System comes from exploding massive stars. About half of the calcium and about 40% of the iron also come from these explosions, with the balance of these elements being supplied by explosions of smaller mass, white dwarf stars. 



While the exact date is not confirmed, many experts think that the stellar explosion that created Cas A occurred around the year 1680 in Earth’s timeframe. Astronomers estimate that the doomed star was about five times the mass of the Sun just before it exploded. The star is estimated to have started its life with a mass about 16 times that of the Sun, and lost roughly two-thirds of this mass in a vigorous wind blowing off the star several hundred thousand years before the explosion.



Earlier in its lifetime, the star began fusing hydrogen and helium in its core into heavier elements through the process known as “nucleosynthesis.” The energy made by the fusion of heavier and heavier elements balanced the star against the force of gravity. These reactions continued until they formed iron in the core of the star. At this point, further nucleosynthesis would consume rather than produce energy, so gravity then caused the star to implode and form a dense stellar core known as a neutron star.

The exact means by which a massive explosion is produced after the implosion is complicated, and a subject of intense study, but eventually the infalling material outside the neutron star was transformed by further nuclear reactions as it was expelled outward by the supernova explosion.

Chandra has repeatedly observed Cas A since the telescope was launched into space in 1999. The different datasets have revealed new information about the neutron star in Cas A, the details of the explosion, and specifics of how the debris is ejected into space.



Image Credit: NASA/CXC/SAO
Explanation from: https://www.nasa.gov/mission_pages/chandra/images/chandra-reveals-the-elementary-nature-of-cassiopeia-a.html

Minggu, 31 Desember 2017

Interacting Galaxy NGC 5256

Interacting Galaxy NGC 5256

A riot of colour and light dances through this peculiarly shaped galaxy, NGC 5256. Its smoke-like plumes are flung out in all directions and the bright core illuminates the chaotic regions of gas and dust swirling through the galaxy’s centre. Its odd structure is due to the fact that this is not one galaxy, but two — in the process of a galactic collision.

NGC 5256, also known as Markarian 266, is about 350 million light-years away from Earth, in the constellation of Ursa Major (The Great Bear). It is composed of two disc galaxies whose nuclei are currently just 13 000 light-years apart. Their constituent gas, dust, and stars are swirling together in a vigorous cosmic blender, igniting newborn stars in bright star formation regions across the galaxy.

Interacting galaxies can be found throughout the Universe, producing a variety of intricate structures. Some are quiet, with one galaxy nonchalantly absorbing another. Others are violent and chaotic, switching on quasars, detonating supernovae, and triggering bursts of star formation.

While these interactions are destructive on a galactic scale, stars very rarely collide with each other in this process because the distances between them are so vast. But as the galaxies entangle themselves, strong tidal effects produce new structures — like the chaotic-looking plumes of NGC 5256 — before settling into a stable arrangement after millions of years.

In addition to the bright and chaotic features, each merging galaxy of NGC 5256 contains an active galactic nucleus, where gas and other debris are fed into a hungry supermassive black hole. Observations from NASA’s Chandra X-ray Observatory show that both of these nuclei — and the region of hot gas between them — have been heated by shock waves created as gas clouds collide at high velocities.

Galaxy mergers, like the one NGC 5256 is currently experiencing, were more common early in the Universe and are thought to drive galactic evolution. Today most galaxies show signs of past mergers and near-collisions. Our own Milky Way too has a long history of interaction: it contains the debris of many smaller galaxies it has absorbed in the past; it is currently cannibalising the Sagittarius Dwarf Spheroidal Galaxy; and in a kind of cosmic payback, the Milky Way will merge with our neighbour, the Andromeda Galaxy in about two billion years.

Also in this Hubble image is another pair of probably interacting galaxies — they are hiding to the right of NGC 5256 in the far distance, and have not yet been explored by any astronomer. From our perspective here on Earth, NGC 5256 is also just a few degrees away from another famous pair of interacting galaxies, Messier 51, which was observed by Hubble in 2005.

Image Credit: ESA/Hubble, NASA
Explanation from: https://www.spacetelescope.org/news/heic1720/

Minggu, 03 Desember 2017

Lenticular Galaxy NGC 5866

Lenticular Galaxy NGC 5866

NGC 5866 is an edge-on galaxy that is tilted to our line-of-sight. It is classified as an S0 lenticular, due to its flat stellar disk and large ellipsoidal bulge. NGC 5866 lies in the Northern constellation Draco, at a distance of 44 million light-years (13.5 Megaparsecs). It has a diameter of roughly 60,000 light-years (18,400 parsecs). This Hubble image of NGC 5866 is a combination of blue, green and red observations taken with the Hubble Telescope's Advanced Camera for Surveys in November 2005.

Image Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA)
Explanation from: https://www.spacetelescope.org/images/opo0624b/

Exoplanet and debris disk orbiting a polluted white dwarf

Exoplanet and debris disk orbiting a polluted white dwarf

This artist's concept shows an exoplanet and debris disk orbiting a polluted white dwarf.

White dwarfs are dim, dense remnants of stars similar to the Sun that have exhausted their nuclear fuel and blown off their outer layers. By "pollution," astronomers mean heavy elements invading the photospheres -- the outer atmospheres -- of these stars.

The leading explanation is that exoplanets could push small rocky bodies toward the star, whose powerful gravity would pulverize them into dust. That dust, containing heavy elements from the torn-apart body, would then fall on the star.

Image Credit: NASA/JPL-Caltech
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA22084

Sabtu, 02 Desember 2017

Saturn

Saturn

After more than 13 years at Saturn, and with its fate sealed, NASA's Cassini spacecraft bid farewell to the Saturnian system by firing the shutters of its wide-angle camera and capturing this last, full mosaic of Saturn and its rings two days before the spacecraft's dramatic plunge into the planet's atmosphere.

During the observation, a total of 80 wide-angle images were acquired in just over two hours. This view is constructed from 42 of those wide-angle shots, taken using the red, green and blue spectral filters, combined and mosaicked together to create a natural-color view.

Six of Saturn's moons -- Enceladus, Epimetheus, Janus, Mimas, Pandora and Prometheus -- make a faint appearance in this image. (Numerous stars are also visible in the background.)

A second version of the mosaic is provided in which the planet and its rings have been brightened, with the fainter regions brightened by a greater amount. (The moons and stars have also been brightened by a factor of 15 in this version.)

The ice-covered moon Enceladus -- home to a global subsurface ocean that erupts into space -- can be seen at the 1 o'clock position. Directly below Enceladus, just outside the F ring (the thin, farthest ring from the planet seen in this image) lies the small moon Epimetheus. Following the F ring clock-wise from Epimetheus, the next moon seen is Janus. At about the 4:30 position and outward from the F ring is Mimas. Inward of Mimas and still at about the 4:30 position is the F-ring-disrupting moon, Pandora. Moving around to the 10 o'clock position, just inside of the F ring, is the moon Prometheus.

This view looks toward the sunlit side of the rings from about 15 degrees above the ring plane. Cassini was approximately 698,000 miles (1.1 million kilometers) from Saturn, on its final approach to the planet, when the images in this mosaic were taken. Image scale on Saturn is about 42 miles (67 kilometers) per pixel. The image scale on the moons varies from 37 to 50 miles (59 to 80 kilometers) pixel. The phase angle (the Sun-planet-spacecraft angle) is 138 degrees.

The Cassini spacecraft ended its mission on September 15, 2017.

Image Credit: NASA/JPL-Caltech/Space Science Institute
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA17218

Exoplanet NGTS-1b

Exoplanet NGTS-1bExoplanet NGTS-1b

The Next Generation Transit Survey (NGTS) instrument at ESO’s Paranal Observatory in northern Chile has found its first exoplanet, a hot Jupiter orbiting an M-dwarf star now named NGTS-1. The planet, NGTS-1b, is only the third gas giant to have been observed transiting an M-dwarf star, following Kepler-45b and HATS-6b. NGTS-1b is the largest and most massive of these three, with a radius of 130% and a mass of 80% those of Jupiter.

The NGTS uses an array of twelve 20-centimetre telescopes to search for the tiny dips in the brightness of a star caused when a planet in orbit around it passes in front of it (“transits”) and blocks some of its light. Once NGTS-1b had been discovered its existence was confirmed by follow-up observations at ESO’s La Silla Observatory: photometric observations with EulerCam on the 1.2-metre Swiss Leonhard Euler Telescope; and spectroscopic investigations with the HARPS instrument on ESO’s 3.6-metre telescope.

Small planets are relatively common around M-dwarf stars, whereas gas giants like NGTS-1b appear to be rarer around M-dwarfs than they are around stars more like the Sun. This is consistent with current theories of planet formation, but observations of more M-dwarfs are needed before a clear understanding of the numbers of giant planets around them can be arrived at. The NGTS is specifically designed to provide better data on planets around M-dwarf stars, and since they account for around 75% of stars in the Milky Way, studying them will help astronomers to understand the majority population of planets in the Galaxy.

The future could be very exciting for this exoplanet system as it has the potential to be studied in greater detail by the suite of instruments on board the NASA/ESA/CSA James Webb Space Telescope (JWST) which is due to be launched in 2019.

Image Credit: University of Warwick/Mark Garlick
Explanation from: https://www.eso.org/public/announcements/ann17076/

Jumat, 01 Desember 2017

Galaxy Cluster Abell 2537

Galaxy Cluster Abell 2537

This picturesque view from the NASA/ESA Hubble Space Telescope peers into the distant Universe to reveal a galaxy cluster called Abell 2537.

Galaxy clusters such as this one contain thousands of galaxies of all ages, shapes and sizes, together totalling a mass thousands of times greater than that of the Milky Way. These groupings of galaxies are colossal — they are the largest structures in the Universe to be held together by their own gravity.

Clusters are useful in probing mysterious cosmic phenomena like dark matter and dark energy, the latter of which is thought to define the geometry of the entire Universe. There is so much matter stuffed into a cluster like Abell 2537 that its gravity has visible effects on its surroundings. Abell 2537’s gravity warps the very structure of its environment (spacetime), causing light to travel along distorted paths through space. This phenomenon can produce a magnifying effect, allowing us to see objects that lie behind the cluster and are thus otherwise unobservable from Earth. Abell 2537 is a particularly efficient lens, as demonstrated by the stretched stripes and streaking arcs visible in the frame. These smeared shapes are in fact galaxies, their light heavily distorted by the gravitational field of Abell 2537.

This spectacular scene was captured by Hubble’s Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing programme called RELICS.

Image Credit: ESA/Hubble & NASA
Explanation from: https://www.spacetelescope.org/images/potw1748a/

Jupiter's Clouds

Jupiter's Clouds

See Jovian clouds in striking shades of blue in this new view taken by NASA's Juno spacecraft.

The Juno spacecraft captured this image when the spacecraft was only 11,747 miles (18,906 kilometers) from the tops of Jupiter's clouds -- that's roughly as far as the distance between New York City and Perth, Australia. The color-enhanced image, which captures a cloud system in Jupiter's northern hemisphere, was taken on Oct. 24, 2017 at 10:24 a.m. PDT (1:24 p.m. EDT) when Juno was at a latitude of 57.57 degrees (nearly three-fifths of the way from Jupiter's equator to its north pole) and performing its ninth close flyby of the gas giant planet.

The spatial scale in this image is 7.75 miles/pixel (12.5 kilometers/pixel).

Because of the Juno-Jupiter-Sun angle when the spacecraft captured this image, the higher-altitude clouds can be seen casting shadows on their surroundings. The behavior is most easily observable in the whitest regions in the image, but also in a few isolated spots in both the bottom and right areas of the image.

Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager.

Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Sean Doran
Explanation from: https://photojournal.jpl.nasa.gov/catalog/PIA21972

Exoplanet WASP-18b

Exoplanet WASP-18b

A NASA-led team has found evidence that the oversized planet WASP-18b is wrapped in a smothering stratosphere loaded with carbon monoxide and devoid of water. The findings come from a new analysis of observations made by the Hubble and Spitzer space telescopes.

The formation of a stratosphere layer in a planet’s atmosphere is attributed to “sunscreen”-like molecules, which absorb UV and visible radiation coming from the star and then release that energy as heat. The new study suggests that the “hot Jupiter” WASP-18b, a massive planet that orbits very close to its host star, has an unusual composition, and the formation of this world might have been quite different from that of Jupiter as well as gas giants in other planetary systems.

“The composition of WASP-18b defies all expectations,” said Kyle Sheppard of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We don’t know of any other extrasolar planet where carbon monoxide so completely dominates the upper atmosphere.”

On Earth, ozone absorbs UV in the stratosphere, protecting our world from a lot of the Sun’s harmful radiation. For the handful of exoplanets with stratospheres, the absorber is typically thought to be a molecule such as titanium oxide, a close relative of titanium dioxide, used on Earth as a paint pigment and sunscreen ingredient.

The researchers looked at data collected for WASP-18b, located 325 light-years from Earth, as part of a survey to find exoplanets with stratospheres. The heavyweight planet, which has the mass of 10 Jupiters, has been observed repeatedly, allowing astronomers to accumulate a relatively large trove of data. This study analyzed five eclipses from archived Hubble data and two from Spitzer.

From the light emitted by the planet’s atmosphere at infrared wavelengths, beyond the visible region, it’s possible to identify the spectral fingerprints of water and some other important molecules. The analysis revealed WASP-18b’s peculiar fingerprint, which doesn’t resemble any exoplanet examined so far. To determine which molecules were most likely to match it, the team carried out extensive computer modeling.

“The only consistent explanation for the data is an overabundance of carbon monoxide and very little water vapor in the atmosphere of WASP-18b, in addition to the presence of a stratosphere,” said Nikku Madhusudhan a co-author of the study from the University of Cambridge. “This rare combination of factors opens a new window into our understanding of physicochemical processes in exoplanetary atmospheres.”

The findings indicate that WASP-18b has hot carbon monoxide in the stratosphere and cooler carbon monoxide in the layer of the atmosphere below, called the troposphere. The team determined this by detecting two types of carbon monoxide signatures, an absorption signature at a wavelength of about 1.6 micrometers and an emission signature at about 4.5 micrometers. This is the first time researchers have detected both types of fingerprints for a single type of molecule in an exoplanet’s atmosphere.

In theory, another possible fit for the observations is carbon dioxide, which has a similar fingerprint. The researchers ruled this out because if there were enough oxygen available to form carbon dioxide, the atmosphere also should have some water vapor.

To produce the spectral fingerprints seen by the team, the upper atmosphere of WASP-18b would have to be loaded with carbon monoxide. Compared to other hot Jupiters, this planet's atmosphere likely would contain 300 times more “metals,” or elements heavier than hydrogen and helium. This extremely high metallicity would indicate WASP-18b might have accumulated greater amounts of solid ices during its formation than Jupiter, suggesting it may not have formed the way other hot Jupiters did.

“The expected launch of the James Webb Space Telescope and other future space-based observatories will give us the opportunity to follow up with even more powerful instruments and to continue exploring the amazing array of exoplanets out there,” said Avi Mandell, an exoplanet scientist at Goddard.

Image Credit: NASA/GSFC
Explanation from: https://www.nasa.gov/feature/goddard/2017/wasp-18b-has-smothering-stratosphere-without-water

Kamis, 16 November 2017

Cygnus Spacecraft seen from the International Space Station at Sunrise

Cygnus Spacecraft seen from the International Space Station at Sunrise

Orbital ATK's Cygnus resupply ship with its cymbal-ike UltraFlex solar arrays approaches the International Space Station's robotic arm Canadarm2 as both spacecraft fly into an orbital sunrise on November 14, 2017.

The cargo craft carried almost 7,400 pounds of crew supplies, science experiments, spacewalk gear, station hardware and computer parts. New research will explore the effectiveness of antibiotics on astronauts and observe how plants absorb nutrients in microgravity. Other experiments will deploy CubeSats to explore laser communications and hybrid solar panels.

Image Credit: NASA
Explanation from: https://www.nasa.gov/image-feature/sunrise-flight-to-the-space-station

U Antliae

U Antliae

Astronomers have used ALMA to capture a strikingly beautiful view of a delicate bubble of expelled material around the exotic red star U Antliae. These observations will help astronomers to better understand how stars evolve during the later stages of their life-cycles.

In the faint southern constellation of Antlia (The Air Pump) the careful observer with binoculars will spot a very red star, which varies slightly in brightness from week to week. This very unusual star is called U Antliae and new observations with the Atacama Large Millimeter/submillimeter Array (ALMA) are revealing a remarkably thin spherical shell around it.

U Antliae is a carbon star, an evolved, cool and luminous star of the asymptotic giant branch type. Around 2700 years ago, U Antliae went through a short period of rapid mass loss. During this period of only a few hundred years, the material making up the shell seen in the new ALMA data was ejected at high speed. Examination of this shell in further detail also shows some evidence of thin, wispy gas clouds known as filamentary substructures.

This spectacular view was only made possible by the unique ability to create sharp images at multiple wavelengths that is provided by the ALMA radio telescope, located on the Chajnantor Plateau in Chile’s Atacama Desert. ALMA can see much finer structure in the U Antliae shell than has previously been possible.

The new ALMA data are not just a single image; ALMA produces a three-dimensional dataset (a data cube) with each slice being observed at a slightly different wavelength. Because of the Doppler Effect, this means that different slices of the data cube show images of gas moving at different speeds towards or away from the observer. This shell is also remarkable as it is very symmetrically round and also remarkably thin. By displaying the different velocities we can cut this cosmic bubble into virtual slices just as we do in computer tomography of a human body.

Understanding the chemical composition of the shells and atmospheres of these stars, and how these shells form by mass loss, is important to properly understand how stars evolve in the early Universe and also how galaxies evolved. Shells such as the one around U Antliae show a rich variety of chemical compounds based on carbon and other elements. They also help to recycle matter, and contribute up to 70% of the dust between stars.

Image Credit: ALMA (ESO/NAOJ/NRAO)/F. Kerschbaum
Explanation from: https://www.eso.org/public/news/eso1730/

Exoplanet 55 Cancri e

Exoplanet 55 Cancri e
The super-Earth exoplanet 55 Cancri e, depicted with its star in this artist's concept, likely has an atmosphere thicker than Earth's but with ingredients that could be similar to those of Earth's atmosphere.

Twice as big as Earth, the super-Earth 55 Cancri e was thought to have lava flows on its surface. The planet is so close to its star, the same side of the planet always faces the star, such that the planet has permanent day and night sides. Based on a 2016 study using data from NASA's Spitzer Space Telescope, scientists speculated that lava would flow freely in lakes on the starlit side and become hardened on the face of perpetual darkness. The lava on the dayside would reflect radiation from the star, contributing to the overall observed temperature of the planet.

Now, a deeper analysis of the same Spitzer data finds this planet likely has an atmosphere whose ingredients could be similar to those of Earth's atmosphere, but thicker. Lava lakes directly exposed to space without an atmosphere would create local hot spots of high temperatures, so they are not the best explanation for the Spitzer observations, scientists said.

"If there is lava on this planet, it would need to cover the entire surface," said Renyu Hu, astronomer at NASA's Jet Propulsion Laboratory, Pasadena, California, and co-author of a study published in The Astronomical Journal. "But the lava would be hidden from our view by the thick atmosphere."

Using an improved model of how energy would flow throughout the planet and radiate back into space, researchers find that the night side of the planet is not as cool as previously thought. The "cold" side is still quite toasty by Earthly standards, with an average of 2,400 to 2,600 degrees Fahrenheit (1,300 to 1,400 Celsius), and the hot side averages 4,200 degrees Fahrenheit (2,300 Celsius). The difference between the hot and cold sides would need to be more extreme if there were no atmosphere.

"Scientists have been debating whether this planet has an atmosphere like Earth and Venus, or just a rocky core and no atmosphere, like Mercury. The case for an atmosphere is now stronger than ever," Hu said.

Researchers say the atmosphere of this mysterious planet could contain nitrogen, water and even oxygen -- molecules found in our atmosphere, too -- but with much higher temperatures throughout. The density of the planet is also similar to Earth, suggesting that it, too, is rocky. The intense heat from the host star would be far too great to support life, however, and could not maintain liquid water.

Hu developed a method of studying exoplanet atmospheres and surfaces, and had previously only applied it to sizzling, giant gaseous planets called hot Jupiters. Isabel Angelo, first author of the study and a senior at the University of California, Berkeley, worked on the study as part of her internship at JPL and adapted Hu's model to 55 Cancri e.

In a seminar, she heard about 55 Cancri e as a potentially carbon-rich planet, so high in temperature and pressure that its interior could contain a large amount of diamond.

"It's an exoplanet whose nature is pretty contested, which I thought was exciting," Angelo said.

Spitzer observed 55 Cancri e between June 15 and July 15, 2013, using a camera specially designed for viewing infrared light, which is invisible to human eyes. Infrared light is an indicator of heat energy. By comparing changes in brightness Spitzer observed to the energy flow models, researchers realized an atmosphere with volatile materials could best explain the temperatures.

There are many open questions about 55 Cancri e, especially: Why has the atmosphere not been stripped away from the planet, given the perilous radiation environment of the star?

"Understanding this planet will help us address larger questions about the evolution of rocky planets," Hu said.

Image Credit: NASA/JPL-Caltech
Explanation from: https://www.nasa.gov/feature/jpl/lava-or-not-exoplanet-55-cancri-e-likely-to-have-atmosphere

© 2013 demo-templatetokosebelah. All rights resevered. Powered By Blogger