Senin, 03 Oktober 2016

The Pencil Nebula: Remnants of an Exploded Star

The Pencil Nebula: Remnants of an Exploded Star

Remnants from a star that exploded thousands of years ago created a celestial abstract portrait, as captured in this NASA Hubble Space Telescope image of the Pencil Nebula.

Officially known as NGC 2736, the Pencil Nebula is part of the huge Vela supernova remnant, located in the southern constellation Vela. Discovered by Sir John Herschel in the 1840s, the nebula's linear appearance triggered its popular name. The nebula's shape suggests that it is part of the supernova shock wave that recently encountered a region of dense gas. It is this interaction that causes the nebula to glow, appearing like a rippled sheet.

In this snapshot, astronomers are looking along the edge of the undulating sheet of gas. This view shows large, wispy filamentary structures, smaller bright knots of gas, and patches of diffuse gas. The Hubble Heritage Team used the Advanced Camera for Surveys in October 2002 to observe the nebula. The region of the Pencil Nebula captured in this image is about three fourths of a light-year across. The Vela supernova remnant is 114 light-years (35 parsecs) across. The remnant is about 815 light-years (250 parsecs) away from our solar system.

The nebula's luminous appearance comes from dense gas regions that have been struck by the supernova shock wave. As the shock wave travels through space [from right to left in the image], it rams into interstellar material. Initially the gas is heated to millions of degrees, but then subsequently cools down, emitting the optical light visible in the image.

The colors of the various regions in the nebula yield clues about this cooling process. Some regions are still so hot that the emission is dominated by ionized oxygen atoms, which glow blue in the picture. Other regions have cooled more and are seen emitting red in the image (cooler hydrogen atoms). In this situation, color shows the temperature of the gas. The nebula is visible in this image because it is glowing.

The supernova explosion left a spinning pulsar at the core of the Vela region. Based on the rate at which the pulsar is slowing down, astronomers estimate that the explosion may have occurred about 11,000 years ago. Although no historical records of the blast exist, the Vela supernova would have been 250 times brighter than Venus and would have been easily visible to southern observers in broad daylight. The age of the blast, if correct, would imply that the initial explosion pushed material from the star at nearly 22 million miles per hour. As the Vela supernova remnant expands, the speed of its moving filaments, such as the Pencil Nebula, decreases. The Pencil Nebula, for example, is moving at roughly 400,000 miles per hour.

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA)
Explanation from: http://hubblesite.org/newscenter/archive/releases/2003/16/image/a/

Minggu, 02 Oktober 2016

Snowball Earth

Snowball Earth

The natural evolution of the Sun made it progressively more luminous during the Archean and Proterozoic eons; the Sun's luminosity increases 6% every billion years. As a result, the Earth began to receive more heat from the Sun in the Proterozoic eon. However, the Earth did not get warmer. Instead, the geological record seems to suggest it cooled dramatically during the early Proterozoic. Glacial deposits found in South Africa date back to 2.2 Ga, at which time, based on paleomagnetic evidence, they must have been located near the equator. Thus, this glaciation, known as the Makganyene glaciation, may have been global. Some scientists suggest this was so severe that the Earth was totally frozen over from the poles to the equator, a hypothesis called Snowball Earth.

The ice age around 2.3 Ga could have been directly caused by the increased oxygen concentration in the atmosphere, which caused the decrease of methane (CH4) in the atmosphere. Methane is a strong greenhouse gas, but with oxygen it reacts to form CO2, a less effective greenhouse gas. When free oxygen became available in the atmosphere, the concentration of methane could have decreased dramatically, enough to counter the effect of the increasing heat flow from the Sun.

However, the term Snowball Earth is more commonly used to describe later extreme ice ages during the Cryogenian period. There were four periods, each lasting about 10 million years, between 750 and 580 million years ago, when the earth is thought to have been covered with ice apart from the highest mountains, and average temperatures were about −58 °F (−50 °C). The snowball may have been partly due to the location of the supercontintent Rodinia straddling the Equator. Carbon dioxide combines with rain to weather rocks to form carbonic acid, which is then washed out to sea, thus extracting the greenhouse gas from the atmosphere. When the continents are near the poles, the advance of ice covers the rocks, slowing the reduction in carbon dioxide, but in the Cryogienian the weathering of Rodinia was able to continue unchecked until the ice advanced to the tropics. The process may have finally been reversed by the emission of carbon dioxide from volcanoes or the destabilization of methane gas hydrates. According to the alternative Slushball Earth theory, even at the height of the ice ages there was still open water at the Equator.

Explanation from: https://en.wikipedia.org/wiki/History_of_Earth#Snowball_Earth

Colliding Galaxies NGC 6872 • IC 4970

Colliding Galaxies NGC 6872 • IC 4970

This picture, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth.

From tip to tip, NGC 6872 measures over 500 000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100 000 and 120 000 light-years across, making NGC 6872 about five times its size.

The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm — although here, recent means 130 million years ago! Astronomers have noted that NGC 6872 seems to be relatively sparse in terms of free hydrogen, which is the basis material for new stars, meaning that if it weren’t for its interactions with IC 4970, NGC 6872 might not have been able to produce new bursts of star formation.

Image Credit: ESA/Hubble & NASA, Judy Schmidt
Explanation from: https://www.spacetelescope.org/images/potw1437a/

Sabtu, 01 Oktober 2016

Photosynthesis Evolution and Oxygen Revolution on Earth

Photosynthesis Evolution and Oxygen Revolution on Earth

Photosynthesis Evolution

Early photosynthetic systems, such as those in green and purple sulfur and green and purple nonsulfur bacteria, are thought to have been anoxygenic, and used various other molecules as electron donors rather than water. Green and purple sulfur bacteria are thought to have used hydrogen and sulfur as electron donors. Green nonsulfur bacteria used various amino and other organic acids as an electron donor. Purple nonsulfur bacteria used a variety of nonspecific organic molecules. The use of these molecules is consistent with the geological evidence that Earth's early atmosphere was highly reducing at that time.

Fossils of what are thought to be filamentous photosynthetic organisms have been dated at 3.4 billion years old.

The main source of oxygen in the Earth's atmosphere derives from oxygenic photosynthesis, and its first appearance is sometimes referred to as the oxygen catastrophe. Geological evidence suggests that oxygenic photosynthesis, such as that in cyanobacteria, became important during the Paleoproterozoic era around 2 billion years ago. Modern photosynthesis in plants and most photosynthetic prokaryotes is oxygenic. Oxygenic photosynthesis uses water as an electron donor, which is oxidized to molecular oxygen (O2) in the photosynthetic reaction center.


Oxygen Revolution

The Great Oxygenation Event (GOE), also called the Oxygen Catastrophe, Oxygen Crisis, Oxygen Revolution, or Great Oxidation, was the biologically induced appearance of dioxygen (O2) in Earth's atmosphere. Although geological, isotopic, and chemical evidence suggest that this major environmental change happened around 2.3 billion years ago (2.3 Ga), the actual causes and the exact date of the event are very contested amongst the scientific community. It has been argued that current geochemical and biomarker evidence for the development of oxygenic photosynthesis before the Great Oxidation Event has been mostly inconclusive.

Oceanic cyanobacteria, having developed into multicellular forms more than 2.3 billion years ago (approximately 200 million years before the GOE), became the first microbes to produce oxygen by photosynthesis. Before the GOE, any free oxygen they produced was chemically captured by dissolved iron or organic matter. The GOE was the point when these oxygen sinks became saturated and could not capture all of the oxygen that was produced by cyanobacterial photosynthesis. After the GOE, the excess free oxygen started to accumulate in the atmosphere.

The increased production of oxygen set Earth's original atmosphere off balance. Free oxygen is toxic to obligate anaerobic organisms, and the rising concentrations may have wiped out most of the Earth's anaerobic inhabitants at the time. Cyanobacteria were therefore responsible for one of the most significant extinction events in Earth's history. Besides marine cyanobacteria, there is also evidence of cyanobacteria on land.

A spike in chromium contained in ancient rock deposits shows that these rocks, formed underwater, had accumulated chromium washed off from continental shelves by rivers. The researchers chose to focus on chromium because it is not easily dissolved and its release would have required the presence of a powerful acid. One such acid is sulphuric acid, that would have been created through bacterial reactions with pyrite. Though cyanobacteria are responsible for the GOE, they are not the only organisms capable of releasing oxygen. Research has shown that microbial mats of oxygen-producing microbes will produce a thin layer, one or two millimeters thick, of oxygenated water in an otherwise anoxic environment even under thick ice, and before oxygen started accumulating in the atmosphere, organisms living on these mats would already be adapted to being exposed to oxygen. Additionally, the free oxygen reacted with atmospheric methane, a greenhouse gas, greatly reducing its concentration and triggering the Huronian glaciation, possibly the longest snowball Earth episode in Earth's history.

Eventually, aerobic organisms evolved, consuming oxygen and bringing about an equilibrium in its availability. Free oxygen has been an important constituent of the atmosphere ever since.

Explanation from: https://en.wikipedia.org/wiki/Photosynthesis#Evolution and https://en.wikipedia.org/wiki/History_of_Earth#Oxygen_revolution

The NGC 3125 Galaxy

NGC 3125 Galaxy

This NASA/ESA Hubble Space Telescope image reveals the vibrant core of the galaxy NGC 3125. Discovered by John Herschel in 1835, NGC 3125 is a great example of a starburst galaxy — a galaxy in which unusually high numbers of new stars are forming, springing to life within intensely hot clouds of gas.

Located approximately 50 million light-years away in the constellation of Antlia (The Air Pump), NGC 3125 is similar to, but unfathomably brighter and more energetic than, one of the Magellanic Clouds. Spanning 15 000 light-years, the galaxy displays massive and violent bursts of star formation, as shown by the hot, young, and blue stars scattered throughout the galaxy’s rose-tinted core. Some of these clumps of stars are notable — one of the most extreme Wolf–Rayet star clusters in the local Universe, NGC 3125-A1, resides within NGC 3125.

Despite their appearance, the fuzzy white blobs dotted around the edge of this galaxy are not stars, but globular clusters. Found within a galaxy’s halo, globular clusters are ancient collections of hundreds of thousands of stars. They orbit around galactic centres like satellites — the Milky Way, for example, hosts over 150 of them.

Image Credit: ESA/Hubble & NASA, Judy Schmidt
Explanation from: https://www.spacetelescope.org/images/potw1629a/

© 2013 demo-templatetokosebelah. All rights resevered. Powered By Blogger